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Abstract

Emotion recognition in conversation (ERC) has been pro-
moted with diverse approaches in the recent years. However,
many studies have pointed out that emotion shift and confus-
ing labels make it difficult for models to distinguish between
different emotions. Existing ERC models suffer from these
problems when the emotions are forced to be mapped into
single label. In this paper, we utilize our strategies for extend-
ing single label to multi-labels. We then propose a multi-label
classification framework for emotion recognition in conver-
sation (ML-ERC). Specifically, we introduce weighted su-
pervised contrastive learning tailored for multi-label, which
can easily applied to previous ERC models. The empirical re-
sults on existing task with single label support the efficacy of
our approach, which is more effective in the most challenging
settings: emotion shift or confusing labels. We also evaluate
ML-ERC with the multi-labels we produced to support our
contrastive learning scheme.

Introduction
Motivated by the introduction of AI conversational systems,
such as chatbots in healthcare, recommendations, and cus-
tomer services, emotion recognition in conversation (ERC)
has attracted increasing attention in recent years. The ERC
task aims to identify the emotion at each utterance in a con-
versation. While consistent improvement is being shown,
there still remain challenges for improvement. Previous
studies have pointed out that emotion shift (Hazarika et al.
2018; Song et al. 2022b; Tu et al. 2023) and confusing la-
bels (Ghosal et al. 2019; Ishiwatari et al. 2020; Lee 2022)
are the causes that make the ERC task difficult (Majumder
et al. 2019; Li et al. 2021; Shen et al. 2021; Yang et al. 2022;
Qin et al. 2023). An emotion shift in ERC occurs when the
emotions of the same speaker change during the speaker’s
consecutive utterances. Confusing emotion, where two sim-
ilar emotions cannot be distinguished within an utterance,
is another challenge in ERC. Recent studies have proposed
models to address these issues by introducing emotion shift
detection module (Gao et al. 2022), using curriculum learn-
ing (Yang et al. 2022) to better handle emotion shift, and
constructing grayscale labels (Lee 2022).
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Figure 1: Example of multiple emotions in each utterance
within a conversation. Specifically, emotion shift frequently
triggers multiple emotions, making it difficult to understand
with only a single emotion label.

These two problems, emotion shift and confusing labels,
arise from the practice of annotating a single emotion la-
bel to an utterance overlooking that an utterance can en-
compass multiple emotions. As illustrated in Figure 1, each
utterance within a conversation is assigned to a single la-
bel. Although an utterance can encompass multiple emo-
tions (right), only the most intense emotion is retained and
other emotions are discarded. In fact, organizing emotions
in 2D or circular arrangements that originated from a study
in the 1950s (Schlosberg 1952) has become more common.
The studies from psychology (Russell 1980; Mikels et al.
2005) use valence-arousal 2D emotion space to describe
emotions. From these perspectives, restricting each utter-
ance to one emotion label is oversimplified. Mikels et al.
(2005) pointed out that emotions are often blended and ex-
pressed through behaviors or utterances, which has moti-
vated a new approach to capturing mixed-emotions. Regard-
less of these studies, however, the emotion recognition task
in ERC still remains in predicting the single label.

To address the aforementioned challenges, we propose
a model called Multi-Label classification for Emotion
Recognition in Conversation (ML-ERC). Although all pre-
vious ERC models attempted to predict a single-label for
each utterance, we switch this same ERC task to multi-label
(emotion) prediction. Since multi-label annotation requires
significant time and efforts, we thus propose a pseudo multi-
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label assignment strategy without additional cost for multi-
emotion labels. The self-annotation scheme is devised based
on the studies in human emotions (Kuppens, Allen, and
Sheeber 2010; Koval et al. 2015) and inductive reasoning.
Specifically, when assigning the additional emotion labels,
we conversely make use of the emotion shift, which previ-
ously had a negative impact.

We employ the supervised contrastive learning (Sup-
Con) (Khosla et al. 2020) scheme for our multi-label ERC
task. However, given that SupCon is originally designed for
single supervisory signals, it cannot be directly extended to
multi-label settings. To bridge this gap, we introduce a novel
multi-label weighted supervised contrastive loss, MulWCL,
designed to better account for multi-label tasks. This objec-
tive makes multi-label classification more effective, and sur-
prisingly it also contributes to performance improvements in
single-label classification by mitigating the challenges from
emotion shift and confusing labels prevalent in ERC field.
Our contribution is three-fold.

• We approach ERC by utilizing a multi-label to address
the two problems: emotion shift and confusing labels.
For this new approach, pseudo multi-labeling scheme for
multi-label is introduced.

• Our ML-ERC incorporates weighted supervised con-
trastive loss to consider the characteristics of multi-label
classification, and employs a soft multi-labeling method
within the module to facilitate the training process.

• We conduct extensive experiments to verify the effective-
ness of our proposed model. We integrate our multi-label
scheme into existing single label ERC models, and show
how our objective improves all of the existing baseline
models.

Related Work
Emotion recognition in conversation Previous works
on emotion recognition in textual conversation can be
summarized into three methods: Recurrence-based, Graph-
based, and Knowledge-enhanced methods. Recurrence-
based works (Hazarika et al. 2018; Majumder et al. 2019; Hu
et al. 2023) consider utterances as sequential data. Graph-
based models (Ghosal et al. 2019; Ishiwatari et al. 2020;
Shen et al. 2021) represent the relationship of an utterance
using a graph. The knowledge-enhanced models improve
the performance of ERC by associating external knowl-
edge (Ghosal et al. 2020; Zhu et al. 2021; Lee and Lee
2022). There are also methods other than these three. Yang
et al. (2022) improve performance by applying hybrid cur-
riculum learning. Gao et al. (2022) propose a multi-task
learning framework that employs emotion shift detection as
an auxiliary task and ERC as the main task. Lee (2022)
attempts to understand emotion using the grayscale label.
Zhang et al. (2023) mimic human thinking through the use
of prompts and paraphrasing. Recently, several works (Song
et al. 2022a; Yang et al. 2023; Hu et al. 2023; Kang and Cho
2024) utilize contrastive learning to effectively learn emo-
tion.

Multi-label classification Multi-label classification has
gained continuous attention in the field of NLP due to its

Model original F1 w/o ES only ES

DialogueRNN 62.75 69.2(+6.45) 47.5(-15.25)
GloVe bcLSTM 61.90 - 52.37(-9.53)

TODKAT 62.60 64.62(+2.02) 56.24(-6.36)
TODKAT+HCL 63.03 67.01(+3.98) 56.91(-6.12)

Table 1: Impact of emotion shift on the performance of ERC.
IEMOCAP dataset was used for the evaluation. The ‘only
ES’, ‘w/o ES’ represent utterances with emotion-shift and
without emotion-shift, respectively.

practical applications (Nam et al. 2017; Zhang et al. 2021).
Particularly, multi-label emotion classification (ER) has seen
active research progress (Alhuzali and Ananiadou 2021; Lin
et al. 2023) with the release of datasets, which provide multi-
label emotion annotations for tweets (Mohammad et al.
2018) and multimodal language (Zadeh et al. 2018). How-
ever, they are quite different from ERC.

Since dialogue involves many complex factors, multi-
label annotation on each utterance in ERC is challenging and
requires human-intensive resources. MEISD dataset (Fir-
daus et al. 2020) marks a pioneering effort to introduce
multi-label annotations in ERC. Zhao et al. (2022) propose
multi-label emotional dialogue in chinese. Despite their ef-
forts, studies in ERC still remain in single classifications
with single-labeled datasets. To the best of our knowl-
edge, yet there are no models in the literature for multi-
label classification in ERC. In this study, we introduce a
pseudo-label strategy that can build multi-labels from exist-
ing datasets. We further introduce a multi-label classification
model which well reflects the nature of emotions in ERC.

Multi-label contrastive learning Supervised contrastive
learning (SupCon) (Khosla et al. 2020) has contributed to
performance improvements in NLP (Gunel et al. 2020; Lin
et al. 2022). However, it is not readily applicable to multi-
label instances since this learning approach assumes that the
sample has single label. Consequently, there are few inves-
tigations for contrastive learning for multi-label in the NLP
field. Su, Wang, and Dai (2022) introduce multi-label con-
trastive learning based on the label similarity of multi-label
instances. Lin et al. (2023) propose five contrastive losses
designed for multi-label text classification. These works pri-
marily focus on using the label correlations across instances.
In this work, we consider a multi-label contrastive learn-
ing approach from two perspectives: the class-level and the
instance-level.

Proposed Approach
Motivation for Multi-label ERC
Many ERC studies have discussed emotion shift and con-
fusing emotion. Here we investigate how these phenomena
affect classification performance in ERC. The first is the is-
sue of emotion shift, which refers to the transition of emo-
tions. Table 1 summarizes the experimental results from sev-
eral studies (Majumder et al. 2019; Ghosal et al. 2021; Yang
et al. 2022), revealing the influence of emotion shift on per-
formance. According to Table 1, F1 score always increases
when emotion shifts are taken out from the test data. When
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Figure 2: The t-SNE visualization on test set of IEMOCAP
dataset. Data points marked with a black border indicates
samples where emotion shift occured. The marking denotes
that each label dominates this space.

performing evaluations on emotion shifts only, we observe
considerable performance degradation, which is up to 15%.
The second key challenge is the confusing labels. Previous
methods (Majumder et al. 2019; Xie et al. 2021; Shen et al.
2021; Li et al. 2021) often failed to distinguish subtle differ-
ences between certain emotions, such as excited-happy and
anger-frustrated. Due to the vague boundaries of confusing
emotions, many models struggle to classify these emotions.

Generating pseudo multi-emotion labels In this study,
we tackle the challenges in ERC with multi-label classifica-
tion. In multi-label classification, each instance can be asso-
ciated with multiple labels, which means, in ERC, each ut-
terance can be annotated with multiple emotion labels. How-
ever, the current benchmark datasets are labeled with sin-
gle emotions. To fill this gap, we propose a self annotation
scheme for generating pseudo multi-emotion labels without
incurring additional costs.

For the automatic annotation strategy, we specifically em-
ploy emotion inertia (Kuppens, Allen, and Sheeber 2010;
Koval et al. 2015), a concept from psychological theory de-
scribing the resistance to changes in emotions. When an
emotional change occurs, the preceding emotion’s influence
results in the persistence of that emotional state. Based on
emotion inertia, the pseudo labels are aligned to emotion
shift allowing two emotions (old and new) to coexist at ev-
ery emotional shift. To support our approach, we visualize
the embeddings of utterances from IEMOCAP, a benchmark
dataset for ERC, using RoBERTa-large as the embedding
module. As illustrated in Figure 2, data points with emotion
shifts are primarily located within or near the overlapping
regions of each emotion. These observations suggest that
emotion-shift data may simultaneously encompass multiple
emotions.

Our pseudo multi-label scheme can generate multiple la-
bels for each utterance from the existing dataset with sin-
gle labels without any human effort for labeling. If the same
speaker’s present utterance and the previous utterance have
different labels in conversation, and none of which are neu-

tral, we target the current utterance for multi-label annota-
tion. When the specified conditions are satisfied, we gener-
ate pseudo multi-labels by aggregating two emotions from
the previous and current utterances of the same speaker;
otherwise, we keep the annotation as single. We also pro-
vides additional examples applying our scheme to the exist-
ing dataset in Appendix B (see Figure S1 and Table S1).

Multi-label ERC Model
Problem definition Each ERC dataset consists of multi-
ple independent conversations, where each conversation is
a sequence of utterances attached to speaker and emotion:
C = {(ui, si, yi)}Ni=1. Here si, yi represent the speaker and
label of ui and N denotes the number of utterances in a
conversation. When target utterance (ut, st) and its context
{(ui, si)}t−1

i=1 are given, the goal of single-label classifica-
tion of ERC is to predict the emotion label (yt) of target ut

in the predefined label set K = {k1, k2, . . . , k|K|}.
Motivated by our findings, we approach the problem from

the point of view of multi-label classification task by asso-
ciating an utterance to multiple labels. We restructure the
dataset by adding multi-hot label ypseudo to the existing data
and expand C to C = {(ui, si, yi,y

pseudo
i )}Ni=1. We define

ypseudo
i = {k1i , k2i , . . . , k

|K|
i } ∈ Z|K|

2 , where each emotion
kj ∈ {0, 1}. The value kji = 1 indicates that the i-th ut-
terance has emotion kj . Throughout this paper, we rename
the current emotion label as the main emotion and define
the additional emotion labels from the multi-label settings
as the sub emotions.

Embedding module We bring RoBERTa-Large (Liu et al.
2019), a pre-trained language model (PLM), as an embed-
ding module. For each utterance, we prepend its respective
speaker and concatenate it with the context of the current
utterance. A special token [CLS], which reflects context in-
formation, is placed at the beginning of this sequence. In
embedding stage, the input and output of ui are as follows:

RoBERTa([CLS], s1, u1, . . . , si, ui) = hi (1)

,where hi ∈ R1×dh is the embedding of [CLS] token of ui

in the last hidden layer.

Multi-label prediction module In multi-label setting,
more than one labels can coexist in one sample. Therefore,
given the hi, embedding of ui, our model predicts the multi-
label of ui following Equation 2 – 4.

zi = Linear(hi), (2)
z̃i = tanh(zi), (3)

oij =

{
1 if z̃ij > mean(z̃i)
0 otherwise

, j ∈ {1, ..., |K|} (4)

, where zi ∈ R1×|K| and oij represent the prediction for
label kj of data ui. Here we use calibrated threshold (Hou
et al. 2021) by taking the mean of each component in z̃ .

ML-ERC learning objectives Supervised contrastive
learning (SupCon) (Khosla et al. 2020) pulls data points with
same label closer to the anchor while repelling negative sam-
ples from the anchor. However, SupCon cannot be directly
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Figure 3: Framework of multi-label weighted supervised
contrastive loss (MulWCL). The thickness of the lines indi-
cating the intensity of the repelling force and different colors
of the sample represent different labels.

used in the multi-label setting for two reasons. First, finding
the positive and negatives pairs with multi-label vector is
too complex as the size of label set increases. Second, as the
multi-label can coexist within a sample, it causes blurring
effect (Lin et al. 2023), where the multiple emotions cause
overlapping positive and negative pairs. To address this, we
introduce a multi-label weighted supervised contrastive loss,
MulWCL, designed specifically for a task with multi-labels.

For the first challenge, we redefine the positive and nega-
tive sets in our settings. Given the extensive range of possi-
ble label combinations in multi-label settings, finding a pos-
itive pair with fully matching labels is challenging. There-
fore, we define the positive set P (i) as instances sharing a
main emotion with the anchor. For negative set of sample i,
we introduce two distinct sets: Am(i) and Vm(i).

Pm(i) = {p|yp = yi, p ̸= i}. (5)

mi = {kj |kji ̸= 0, kji ∈ ypseudo
i },

Am(i) = {a|ya /∈ mi, a ̸= i}, (6)
Vm(i) = {v|yv ∈ (mi − yi), v ̸= i}. (7)

Am(i) is the true negative set comprised of samples
whose labels do not belong to the multi-label of sample i.
Vm(i) is a set comprising samples not matching the main
label of sample i but aligning with one of sub emotions of
sample i. While the vanilla SupCon pushes Vm away with
the same force as it does samples in true negative set Am, we
reduce the weight of repulsion in Vm. The intuition behind
this is that any pair of samples from multi-label set Vm can
have looser repulsion than the samples drawn from the true
negative set Am in the latent space. When a sample takes
multiple emotions, an emotion can be both positive and neg-
ative to a given sample, which causes the second challenge,
blurring effect. Since we categorize the samples into a pos-
itive set and two negative sets, our MulWCL ensures that
there is no overlap between the three sets.

We design two weights from different perspectives: class-
level and instance-level. The samples exhibiting multiple
emotions pose challenges in representing each emotion
clearly, compared to samples characterized by a single label.
Thus, we apply weights tailored to the multi-label context to
achieve better distinctions between emotions. We design the
class-level weighted score for the multi-label set Vm by re-
flecting the similarity between the anchor’s main emotion
and sub emotion in Vm. We adjust the repelling force, re-
ducing it as the similarity between labels increases. The cal-
culations for both positive and negative scores are presented
in Equations 8 and 9.

Pmulti(i) =
∑

p∈Pm(i)

exp(sim(hi,hp)/τ), (8)

Nmulti(i) =
∑

a∈Am(i)

exp(sim(hi,ha)/τ) (9)

+
∑

v∈Vm(i)

(1− (sim(ri, rv) + 1)

2
)︸ ︷︷ ︸

class weight

· exp(sim(hi,hv)/τ),

where the sim(·) calculates similarity between two samples
and we use a cosine similarity. τ is a temperature parameter.
r indicates label representation in Valence-Arousal dimen-
sion obtained from previous studies (Yang et al. 2022, 2023).
Further details regarding the relation between emotions can
be found in the Appendix B.

Furthermore, we calculate the instance-level weighted
score, leveraging entropy measure. We try to capture pat-
terns more from the samples with distinct emotions while
paying less attention to the samples with mixed emotions.
Thus, we apply small weights to the samples with high en-
tropy.

ei =
−
∑|K|

j=1 σ(zi)j log σ(zi)j

log |K| . (10)

LMulWCL(i) = (1− ei)︸ ︷︷ ︸
instance weight

(
−1

|Pm(i)| log
Pmulti(i)

Nmulti(i)

)
. (11)

Entropy is calculated in Equation 10 and σ is softmax
function. The entropy inverted to serve as weights. These
instance-wise weights adjust the attraction within positive
pairs and the repulsion within negative pairs. We highlight
that our loss function, LMulWCL, applies both class-wise and
instance-wise weights through label similarity in Equation 9
and entropy in Equation 11. Finally, the overall loss we op-
timize is presented below.

LML-ERC = Lbce + αLMulWCL, (12)

where Lbce is the binary cross-entropy loss and α is hyperpa-
rameter that controls the effect of our weighted multi-label
loss.

Soft multi-labeling As multi-label annotation is time-
consuming and expensive, we assign pseudo multi-label on
the data where emotion shifts occur. However, we speculate
that there still could be more utterances with multiple emo-
tions that our pseudo labeling scheme has missed. We addi-
tionally introduce soft multi-labels annotated to the potential
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Algorithm 1: Learning procedure of ML-ERC for each batch
B at each epoch. Once the model runs several iterations, we
conduct soft-labeling.

Input: B = {(ui, si, yi,y
pseudo
i ,psoft

i = ypseudo
i )}Nb

i=1;
K = single label set;

Output: LML-ERC;
Bnew = batch updated with soft-labeling

Bnew = []
for i = 1, ... ,Nb do

oi = {oij = 0}|K|
j=1

hi = RoBERTa(ui, si, context)
z̃i = Normalize(hi) ; // Eq 2, 3
for j = 1, ... ,|K| do

if mean(z̃i) < z̃ij then
oij = 1

end
end
calculate entropy ei ; // Eq 10

pnew = ypseudo
i

if count({x ̸= 0 | x ∈ ypseudo
i }) == 1 then

if γ < ei then
pnew = oi

end
end
Bnew.append((ui, si, yi,y

pseudo
i ,psoft

i = pnew))
end
LML-ERC = LBCE(p

soft,o) + αLMulWCL(h,y,p
soft)

B = Bnew ; // update batch B to Bnew for next
iteration

utterances using the embeddings learned from the model. To
enhance the efficacy of soft-labeling, we employ the entropy
calculated in Equation 10 as criterion for soft-label genera-
tion. This approach aims to avoid incorrectly applying multi-
labeling to data that is unlikely to exhibit multiple emotions.

psoft
i =

{
oi if

(∑|K|
j=1 1(y

pseudo
j ̸= 0) = 1

)
and (γ < ei)

ypseudo
i otherwise

(13)
, where psoft

i and oi represent the soft multi-label and the
multi-label prediction of sample i, respectively. The 1(·) is
an indicator function, and γ is a hyperparameter that controls
the threshold for soft-label assignment.

If the entropy of the data exceeds a pre-defined value (γ),
we additionally assign the multi-labels oi predicted for ui

in Equation 4 as its soft-labels. These soft-labels are then
used as pseudo multi-labels for the corresponding data in the
next training epoch. It is worth noting that soft-labeling is
applied exclusively during the training phase and is not used
during the inference stage. To ensure the quality of the soft-
labels, we initially train our model for a sufficient number
of iterations until the model becomes reliable, and integrate
the soft-label strategy into the training process. This kind of
strategy can be seen in other works (Wang et al. 2020). Our
ML-ERC is outlined in the Algorithm 1.

Experimental Settings
Data We conduct experiments on three benchmark ERC
datasets annotated with single labels. The statistics for each
dataset are provided in Table S4 in Appendix F. For the ERC
task, only text scripts are being used. EmoryNLP (Zahiri and
Choi 2018) is labeled with joyful, mad, neutral, peaceful,
powerful, scared, and sad from the Feeling wheel (Willcox
1982). MELD (Poria et al. 2019) is a multi-modal dataset
with a label set that includes anger, disgust, fear, joy, neu-
tral, surprise, and sadness. IEMOCAP (Busso et al. 2008) is
a dyadic multimodal dataset with labels including excited,
neutral, frustrated, sadness, happiness, and anger.

Baselines We bring representative methods in ERC :
recurrence-based DialogueRNN (Majumder et al. 2019),
graph-based DAG-ERC (Shen et al. 2021), knowledge-
based CoMPM (Lee and Lee 2022), and PLM based
MPLP (Zhang et al. 2023). Furthermore, we implement the
RoBERTa-largemodel (Liu et al. 2019) by adding a clas-
sification layer to the top of the embedding.

Training setup To train our ML-ERC method, we set the
learning rate, the number of batch sizes and epochs are 1e-
6, 16 and 30, respectively. We fix τ in Eq 8, 9 to 0.05. For
α in Eq 12, we search the parameter using the validation
set. We set α to 0.7 for Emorynlp, 0.1 for MELD, and 0.4
for IEMOCAP. All experiments are performed on an Nvidia
RTX A6000 GPU. Further details on parameters are pro-
vided in Appendix E.

Experimental Results and Analysis
Our approach using multi-label to ERC benchmark dataset is
new in the ERC literature. We therefore evaluate our model
in two ways to verify the effectiveness of approach: single-
label classification and multi-label classification.

Results of Single-label Classification
Previous ERC methods have suffer from the problems of
emotion shift and confusing labels, which are the motivation
of our work. Here, we verify how our multi-label scheme
mitigates the aforementioned challenges.

Implementation and evaluation details We capture the
final representation of the data and the loss values directly
from baseline ERC models. The embeddings generated by
the ERC models are then leveraged to compute the multi-
label loss in Equation 12. We integrate the multi-label loss
values (LML-ERC) with the original loss from ERC model
(LERC) through the hyperparameter β, which is set to 0.5,
and optimize a given model. Thus, the final loss for single-
label classification is expressed as L = βLERC + (1 −
β)LML-ERC. We maintain the hyperparameter settings as de-
fined by the original models without conducting any addi-
tional tuning when integrating our objective for fair compar-
ison. Following previous ERC studies, we use the weighted
F1-score as our evaluation metric.

Effect of multi-label objectives Table 2 shows the effi-
cacy of multi-label objective. All of the results are repro-
duced using the original code. The ERC models attain a per-
formance boost through our loss. We consistently achieve
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DatasetBase
Model Loss EMORY MELD IEMOCAP

LERC 33.08 64.27 63.58RoBERTa +LML-ERC 35.74 65.15 63.96
LERC 37.44 57.03 62.75DialogueRNN + LML-ERC 38.18 57.51 63.56
LERC 38.85 63.38 67.07DAG-ERC + LML-ERC 39.02 63.58 68.12
LERC 36.20 64.87 66.47CoMPM + LML-ERC 37.35 65.90 68.00
LERC - 65.45 65.03MPLP + LML-ERC - 65.93 66.09

Table 2: Experiment results in single-label classification.

DatasetBase
Model Loss EMORY MELD IEMOCAP

LERC 29.17 51.37 45.01RoBERTa + LML-ERC 31.37 55.15 48.20
LERC 36.81 41.87 46.86DialogueRNN + LML-ERC 37.97 41.82 53.41
LERC 35.81 50.88 63.25DAG-ERC + LML-ERC 35.01 50.95 63.78
LERC 22.50 50.03 46.14CoMPM + LML-ERC 29.79 53.45 45.60
LERC - 52.45 49.34MPLP + LML-ERC - 55.28 53.78

Table 3: Experiment results in emotion shift data.

Confusing labels (↓)Base
Model Objective Peaceful - Happy Powerful - Happy Sad – Fear Angry - Frustrated Excited - Happy

LERC 34.14 38.96 28.67 26.39 40.77RoBERTa +LML-ERC 33.60 (-0.54) 32.37 (-6.59) 24.81 (-3.86) 23.24 ( -3.15) 24.44 ( -16.33)
LERC 33.25 34.32 30.89 28.20 29.10CoMPM +LML-ERC 26.94 (-6.31) 33.91 (-0.41) 24.97 (-5.92) 22.16 ( -6.04) 25.66 ( -3.44)
LERC 24.07 35.94 25.52 19.16 33.78DAG-ERC +LML-ERC 24.76 ( +0.69) 32.15 ( -3.79) 25.42 ( -0.10) 18.95 ( -0.21) 33.01 ( -0.77)

Table 4: The misclassified rate (lower the better) as confusing labels on ERC datasets. We select confusing labels, which have
a similarity of 0.6 or higher between two emotions in Figure S2 in Appendix.

performance improvements on all the baselines across three
datasets. It is worth noting that we inject a multi-label per-
spective to ERC models without additional training data. We
speculate that our method takes advantage of the rich infor-
mation overlooked by previous single-label approaches.

Performance on emotion shift We perform single-label
classification on selected test data which involves emotion
shift, which is presented in Table 3. Compared to the per-
formance of the full dataset in Table 2, Table 3 shows a sig-
nificant performance drop ranging from 3% to 20% on the
emotion shift data. These results show that traditional ERC
methods are vulnerable to classify samples with emotion
shift. However, incorporating our multi-label objective into
the training of ERC models enhances performance across
most evaluations, while some results slightly underperform
the baselines.

Performance on confusing labels Table 4 shows the
proportion which incorrectly classified as confusing emo-
tions compared with the true label. Confusing emotions are
closely positioned in embedding space, highly co-occurring.
Training with single labels forces multiple emotions into one
emotion, bringing similar emotions closer in the embedding
space. Our MulWCL effectively reduces the overlapping ar-
eas between these confusing emotions. Thus, models trained
with our method classify emotions in similar spaces better
(less confused) than original model.

Results of Multi-label Classification
In previous section, we demonstrated that our multi-label ap-
proach allviates the issues in ERC and achieves performance

improvements. In this section, we evaluate the multi-label
classification performance of our proposed framework.

Implementation and evaluation details In ERC, re-
search on multi-label classification is rudimentary. Thus, we
apply our multi-label prediction module to single-label base-
line models. We calculate the embedding values for each ut-
terance through the ERC models, and then predict the multi-
labels for each embedding using a calibrated threshold in
equation 4. 1 As evaluation metrics, we choose weighted
F1 scores and macro F1 score. We additionally use metrics
used in other multi-label tasks, such as AUC (Area Under
the Curve) and hamming loss.

Multi-label classification performance The results are
reported in Table 5, where we compare ML-ERC against
other multi-label performance extended from baselines.
Our ML-ERC outperforms the multi-label performances of
baseline models. The ERC models trained on single-label
datasets tend to overfocus on tracking the strongest signal
while disregarding the probabilities of other emotional sig-
nals. Thus, extending the single-label ERC to multi-label
by using a calibrated threshold still exhibits limited perfor-
mance on multi-label classification.

Ablation study We first strip independently two compo-
nents, MulWCL and soft multi-labeling in Table 6. The re-
sults demonstrate that omitting MulWCL consistently leads
to performance degradation, highlighting its vital impor-
tance in ML-ERC. The absence of soft multi-labeling leads

1Note that we maintain the training process and hyperparameter
setting of each ERC model without modification.

24326



EmoryNLP MELD IEMOCAP
Model M-F1(↑) W-F1(↑) AUC(↑) HL(↓) M-F1(↑) W-F1(↑) AUC(↑) HL(↓) M-F1(↑) W-F1(↑) AUC(↑) HL(↓)

DialogueRNN 32.80 40.62 0.583 0.2388 34.37 56.61 0.612 0.1622 61.77 62.95 0.758 0.1440
DAG-ERC 36.47 41.33 0.586 0.3647 39.13 55.91 0.649 0.3038 58.34 57.97 0.772 0.2814
CoMPM 37.76 39.74 0.617 0.4018 39.80 55.12 0.714 0.2720 57.06 58.19 0.808 0.2803
MPLP - - - - 41.71 55.49 0.691 0.2466 59.39 59.99 0.811 0.2421
ML-ERC 38.69 41.56 0.630 0.2535 50.03 63.01 0.718 0.1250 68.58 69.17 0.815 0.1312

Table 5: Experiment results in multi-label classification. M-F1, W-F1, and HL represent macro-F1 (%), weighted-F1 (%) and
hamming loss, respectively. Higher macro-F1, weighted-F1, and AUC, along with lower hamming loss, indicate better perfor-
mance. We highlight the best performance among the main results in bold. All results are reproduced using their respective
official codebase.

EmoryNLP MELD IEMOCAP
Model S-F1(↑) M-F1(↑) W-F1(↑) AUC(↑) HL(↓) S-F1(↑) M-F1(↑) W-F1(↑) AUC(↑) HL(↓) S-F1(↑) M-F1(↑) W-F1(↑) AUC(↑) HL(↓)

ML-ERC 35.74 38.69 41.56 0.630 0.253 65.15 50.03 63.01 0.718 0.125 63.96 68.58 69.17 0.815 0.131
w/o MulWCL 34.85 37.72 40.70 0.625 0.253 64.21 48.64 62.87 0.715 0.130 62.14 66.81 67.97 0.807 0.131
w/o Soft-label 34.75 38.05 40.88 0.624 0.256 64.16 50.16 63.28 0.721 0.126 63.29 68.42 68.96 0.817 0.128
w/o Both 33.12 36.63 39.38 0.620 0.267 63.65 48.64 62.40 0.717 0.125 63.13 65.35 67.23 0.796 0.137

Table 6: Ablation study. S-F1 is weighted F1-score. S-F1 is the result of single-label classification, whereas M-F1, W-F1, AUC,
and HL are the outcomes of multi-label classification.

EmoryNLP MELD IEMOCAP
Loss M-F1(↑) W-F1(↑) AUC(↑) HL(↓) M-F1(↑) W-F1(↑) AUC(↑) HL(↓) M-F1(↑) W-F1(↑) AUC(↑) HL(↓)

BCE 34.57 37.12 0.597 0.2888 48.60 62.52 0.716 0.1256 65.41 66.28 0.816 0.1339
+ SupCon 36.63 39.38 0.620 0.2675 48.64 62.40 0.717 0.1258 65.35 67.23 0.796 0.1373
+ SCL 37.03 39.95 0.617 0.2632 48.97 62.76 0.712 0.1251 67.24 68.52 0.807 0.1325
+ JSCL 37.86 40.50 0.619 0.2674 49.88 62.28 0.714 0.1248 67.35 68.16 0.820 0.1339
+ JSPCL 33.46 35.77 0.589 0.2949 49.07 62.56 0.716 0.1261 66.18 66.98 0.821 0.1478
+ SLCL 17.27 23.23 0.503 0.3134 39.19 58.63 0.668 0.1496 61.12 62.11 0.792 0.1869
+ ICL 34.24 36.56 0.592 0.3058 49.02 63.10 0.720 0.1313 62.34 63.34 0.794 0.1698
+ MulWCL 38.05 40.88 0.624 0.2566 50.16 63.28 0.721 0.1260 68.42 68.96 0.817 0.1288

Table 7: Comparisons against multi-label contrastive losses. Bold score indicates the best performance, and underlined score
indicates the second-best performance in each evaluation setting. All of the results in baselines are implemented with method
outlined in the original paper.

to reduced performance on both the EmoryNLP and IEMO-
CAP datasets. These results reveal that the two modules
designed for multi-label classification effectively enhance
performance in both multi-label and single-label classifica-
tion. For extended experiments on MulWCL and soft multi-
labeling, see Appendix C.

Comparisons against multi-label contrastive losses To
better demonstrate the effectiveness of our multi-label con-
trastive loss, we replace it with other learning objectives and
compare the performances. Lin et al. (2023) has introduced
five contrastive losses, SCL, JSCL, JSPCL, SLCL, and ICL
tailored for multi-label contexts (details provided in Ap-
pendix D). We exclude pseudo labeling from our model to
strictly verify the effect of multi-label contrastive loss of
ours. In Table 7, we find that MulWCL outperforms other
multi-label contrastive losses in most metrics.

Conclusion
In this paper, we propose a novel ERC model for Multi-
Label classification for Emotion Recognition in Conversa-
tion (ML-ERC) to tackle problems when the emotions are
constrained to a single label. ML-ERC employs a novel
weighted supervised contrastive learning (MulWCL) to ob-
tain better representative embedding and a soft-labeling
method to facilitate multi-label classification. The experi-
mental results show that ML-ERC not only exhibits superior
performance in multi-label classification but also achieves a
performance boost for all ERC baselines by effectively mit-
igating the ERC challenges.
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